Birmingham University. UK: A team of scientists led by the University of Birmingham have 
identified a new mechanism of antibiotic resistance in bacterial cells 
which could help us in understanding, and developing solutions to, the 
growing problem of antibiotic resistance.
    
    
      The research, published today in PNAS, describes the way in which a strain of Salmonella within a patient was able to develop resistance to the commonly used antibiotic drug ciprofloxacin. 
    
    
      The patient in question was admitted to hospital for repair of a 
leaking abdominal aortic aneurysm graft, and was treated for a 
disseminated Salmonella infection.
    
    
      Through isolates taken over the course of 20 weeks, the team used 
whole genome sequencing to reveal a mutation in the bacterial cells that
 allowed them to become resistant to the effects of some antibiotics.
    
    
      Dr Jessica Blair explained, “We cannot know for sure when this 
mutation happened within this strain. What we do know is that it 
developed soon after this patient was given ciprofloxacin to treat the 
infection. It’s further evidence that, when it comes to the issue of 
antibiotic resistance, we are coming up against a very capable and 
complex adversary.”
    
    
      Bacteria can become resistant to antibiotics in several different 
ways. One way is through efflux pumps, bacterial vacuum cleaners, which 
pump antibiotics from inside bacterial cells to the outside where they 
are unable to have any effect.
    
    
      The previously unobserved mutation found in the bacteria isolated 
from this patient alters the efflux pump. The researchers showed that 
the mutation makes it more efficient at pumping some antibiotics, 
including ciprofloxacin, out of the bacterial cells.
    
    
      Laura Piddock, Professor of Microbiology at the University of 
Birmingham, BSAC Chair in Public Engagement and Director of Antibiotic 
Action said, “We have long advocated that the issue of antibiotic 
resistance was, in the words of Dame Sally Davies, Chief Medical Officer
 “a ticking time bomb” and that urgent action was needed to stem 
resistance and identify solutions to the near empty antibiotic 
pipeline.”
    
    
      “Our study  further highlights the need for increased 
understanding about antibiotic resistance, not least to inform future 
strategies to both minimise and prevent antibiotic-resistant bacteria 
arising when new treatments become available.”
    
    
      The team are hopeful that such insights into the mechanisms by 
which bacteria become resistant to antibiotics will help to design 
smarter therapies and drugs. In this instance, the treatments would be 
designed to avoid the impact of the particular mutation. This is a 
realistic aspiration, as surprisingly the team also found that some 
antimicrobial compounds were pumped out poorly by the mutated pump and 
so had enhanced antibiotic activity.
    
    
      Antibiotic resistance is becoming the subject of increased focus 
through the actions of such groups as Antibiotic Action. The World 
Health Organisation recently warned that “many common infections will no
 longer have a cure and, once again, could kill unabated.”
    
    
      Professor Piddock added, “Antibiotic use and resistance is still 
increasing, but it's not surprising with the widespread and often 
indiscriminate use of these invaluable medicines. Though we don’t want 
to be seen as scaremongering, we’ve long passed the point at which we 
can turn a blind eye to the growing threat.”
    
    
      Notes to editors
    
    
      For interview requests or for more information, please contact Luke Harrison, Media Relations Manager, University of Birmingham on +44 (0)121 414 5134.
    
    
      For out of hours media enquiries, please call: +44 (0) 7789 921 165