To understand more about the genetics underlying IBD, researchers studied the genomes of 16,000 UK IBD patients, as well as 10,000 more from a previously published international study, in the largest whole-genome IBD genetic study to date.
From the research, which included 5 per cent of IBD sufferers nationwide, scientists identified a rare genetic variant that doubles the risk of ulcerative colitis. The variant affects a gene known as ADCY7, and is carried by 1 in 200 people in the UK. It is one of the strongest genetic risk factors associated with ulcerative colitis to date and presents a novel drug target for IBD.
In the second study, researchers identified that a family of proteins called integrins play a key role in increasing the risk of IBD. Integrins are transmembrane proteins that act as bridges for interactions between cells from the immune system and the rest of the body. For the inflammation associated with IBD symptoms, drugs targeting some of these interactions have been shown to be effective. This study demonstrated that genetic variants that increase the risk of developing IBD also increase the expression of certain integrins in response to stimulation of the immune system.
“We study genetics because we ultimately want to understand the biology of the disease. From the genetic information we can extract a compelling story about why a particular anti-integrin drug is effective against Inflammatory Bowel Disease, or why others have serious side effects.”These examples of genome wide association studies give scientists a clearer view of IBD biology than they had previously and are helping to reveal the underpinning biology of human inflammatory diseases overall.
Katrina de Lange, first author from the Wellcome Trust Sanger Institute
Looking to the future, Sanger Institute scientists, with help from the UK IBD BioResource, are aiming to sequence 25,000 genomes of IBD patients in the next five years. The unprecedented scale of this study will hopefully reveal even more details of the biology of this condition.
“Whilst there are challenges in recruiting large numbers of patients to IBD studies and interpreting the resulting volume of data, there are also great opportunities to better understand the role of genetic variation in not only risk of disease but also in treatment and prognosis. The IBD Bioresource will drive recruitment of IBD patients across the UK and allow recall of patients for repeat tests so the function of specific genes behind IBD can be explored.”The results from these studies will be translated into potential treatments by Open Targets, an initiative that takes the outputs of the genetic studies and works with pharmaceutical companies to aid the development of new treatments for diseases including IBD.
Dr Miles Parkes, co-author of the studies and consultant gastroenterologist at Addenbrooke’s Hospital in Cambridge
“The scale of these collaborations means we are able to spot genetic associations to IBD that we hadn’t seen previously. We hope that by continuing to work together we will be able to translate these findings into better treatments for IBD patients.”
Dr Carl Anderson, a lead author from the Wellcome Trust Sanger Institute