Leeds: A prototype robotic sleeve, which can wrap around a
weak heart before synchronising with its natural motion to help it keep
beating, has been developed by an international team of engineers. Dr Ali
Alazmani, a University Academic Fellow from the Faculty of Engineering at
Leeds, is central to the team, which includes researchers from Harvard and the
Boston Children’s Hospital. Dr
Alazmani said: “We took the inspiration for how the heart itself already
operates, to take a new approach to providing support for the muscle rather
than trying to circumvent it as current devices do.”
The device uses innovative soft robotics technology; a thin
silicone sleeve containing soft pneumatically controlled components
slides around the heart and contracts or relaxes, as a healthy heart
would itself, so mimicking the outer muscle layers.
The device is attached to an external pump, which uses air to power the
sleeve.
The
sleeve is an entirely new device and could be tailored to individual patients’
needs. The shape of the sleeve can be moulded to an individual heart and, for
example, those with a weakness on the right side of their heart could have more
pressure applied in that area to boost its operation. The levels of pressure
can also be reduced over time as the heart recovers from a trauma.
Other
devices, known as ventricular assist devices (VADs) do exist to support the
heart’s function, and are used on people with end stage heart failure who are
awaiting transplants.
They
successfully extend lives, but because they come into contact with the blood by
pumping it directly into the heart muscle, have a high level of risk, including
blood clots, infections and other issues.
The new
soft robotic sleeve does not come into direct contact with blood, as it wraps
around the outside of the heart, avoiding that risk and so could provide an
alternative treatment method to existing devices.
It is
still in the prototye stage, but Dr Alazmani said a working version of the
device has been successfully tested on six pigs which had had a cardiac arrest.
The trials, carried out in America, proved it was able to restore the normal
blood flow.
There is
further research to be carried out in order to make the device suitable for
human use, but trials so far have contributed greatly to ensuring it is
feasible and deliverable.
Dr
Alazmani added: “I’d also like to think we have proved that robotics can have
many applications other than those which most people think of, like working on
assembly lines.
“By
combining good design and simple control, soft robots like this one can be
programmed to carry out complex motion by mimicking the actions of tissues in
the body. In the past this method has been tested outside the body, but we can
see there are now opportunities to create soft robotic devices which could
theoretically be implanted inside a person.”
The
research has been published today in the journal Science Translational
Medicine.
It was
supported by the Translational Research Program grant from Boston Children's
Hospital, a Director's Challenge Cross-Platform grant from the Wyss Institute
for Biologically Inspired Engineering, Harvard School of Engineering and
Applied Sciences and Science Foundation Ireland.
Further information
Journalists
wishing to interview Dr Alazmani should contact Peter Le Riche, in the
University of Leeds press office on 0113 343 2049 or email p.leriche@leeds.ac.uk.