INSERM: To protect against attack, the body uses natural repair processes.
What is involved in the spontaneous regeneration of the myelin sheath
surrounding nerve fibres? This is the question addressed by researchers
in Unit 1195, “Neuroprotective, Neuroregenerative and Remyelinating
Small Molecules” (Inserm/Paris-Sud University). They have discovered, in
mice, the unexpected regenerative role of testosterone in this process.
This could be a factor in the progression of demyelinating diseases,
such as multiple sclerosis, which can present differently in women and
men, and heralds new therapeutic opportunities.
These results are published in PNAS.
The myelin sheath allows the rapid transmission of information
between the brain or spinal cord and the rest of the body. Myelin may be
targeted by conditions known as demyelinating diseases, such as
multiple sclerosis or injuries that lead to its destruction. These
diseases disrupt neurotransmission, leading to various symptoms
including paralysis. Repair mechanisms then come into play, and bring
about myelin regeneration and resolution of symptoms. This regenerative
process is erratic, for reasons that are still largely unknown. This
question was analysed by the research team “Myelination and Myelin
Repair” in Unit 1195, “Neuroprotective, Neuroregenerative and
Remyelinating Small Molecules.”
In this study, the researchers present evidence of the unexpected
central role of the well-known male sex hormone, testosterone, and of
its receptor, the androgen receptor, in spontaneous myelin repair.
“Testosterone promotes the production of myelin by the cells that
synthesise it in the central nervous system, in order to repair the
sheath, which is essential to the transmission of nerve impulses,” explains Elisabeth Traiffort, Inserm Research Director.
In the absence of testes and hence of the hormone, testosterone, that
these organs produce, the spontaneous myelin repair process is
disrupted in mice. Indeed, the maturation of cells specialised in myelin
synthesis, known as oligodendrocytes, is defective. The researchers
also showed that control of this maturation, provided by astrocytes,
another type of cell with an important role in repair, is what is
compromised.
But why testosterone? Returning to the origins of this hormone, it
turns out, surprisingly, that the androgen receptor that enables
testosterone to act appeared at the same time as myelin, very late in
the evolution of gnathostomes (vertebrates with jaws). According to the
researchers, this would explain their very strong association in the
myelination process.
“It is perhaps also one of the reasons why progression of
demyelinating diseases such as multiple sclerosis often differs between
men and women. Our results pave the way for new therapeutic
opportunities, and might also benefit research on psychiatric diseases
or cognitive ageing,” concludes Elisabeth Traiffort, Inserm Research Director.