
These exciting findings are the result of an international collaboration involving research teams in the UK, Netherlands, and the US.
"Every tumour is different, even those that arise in the same organ. They each have a mixture of cells with different mutations that subsequently determine if a treatment will be effective," explains Dr Hayley Francies, a first author from the Wellcome Trust Sanger Institute. "Organoids, much to our delight, replicated the features of patient tumours. This gives us a more realistic environment in which to test new and existing drugs, and to explore combination therapies."
" This exciting new tool has the potential to transform the way we develop and deliver cancer treatment " Mathew Garnett

Normal
cells and cancer cells were taken from patients and used to form
organoids. The organoids were genetically sequenced to check that they
replicated the features of patient tumours and then used for drug
testing.
Samples from healthy tissue and cancerous tissue were taken from 20 patients with colorectal carcinoma and used to form the organoids. The organoids were then exposed to a range of colorectal cancer treatments as part of the Sanger Institute's high-throughput drug screen, which is testing hundreds of different drugs against cancer cell lines.
"This exciting new tool has the potential to transform the way we develop and deliver cancer treatment, says Dr Mathew Garnett, a senior author at the Sanger Institute. "We feel fortunate to have been part of this collaborative scientific effort. We are now building a biobank of organoids at the Sanger Institute that will help to illuminate the complex interactions between the multiple genomic alterations in tumours that determine which drugs work and which don't."
Organoids could ultimately be used in the clinic to predict how a patient will respond to treatment. However, researchers say that more work to speed up and standardise the process of producing and testing organoids is needed before this is possible. In the short term, organoids are likely to speed up the process of developing new cancer treatments and reduce costs.
"Often, the jump from studying a cancer treatment in cells to performing a successful patient trial is too wide," says Professor Hans Clevers, a senior author at the Hubrecht Institute. "Organoids are so experimentally tractable that they can answer many of our questions about cancers, bridging this gap. Not only can organoids save time and resources, we hope that they will one day let us see how treatments will work in an individual's unique cancer."