Saint Louis: The most devastating consequence of Zika virus infection is the
development of microcephaly, or an abnormally small head, in fetuses
infected in utero. Now, researchers at Washington University School of
Medicine in St. Louis and Vanderbilt University School of Medicine have
identified a human antibody that prevents — in pregnant mice — the fetus
from becoming infected with Zika and damage to the placenta. The
antibody also protects adult mice from Zika disease.
“This is the first antiviral that has been shown to work in pregnancy
to protect developing fetuses from Zika virus,” said Michael Diamond,
MD, PhD, the Herbert S. Gasser Professor of Medicine and the study’s
co-senior author. “This is proof of principle that Zika virus during
pregnancy is treatable, and we already have a human antibody that treats
it, at least in mice.”
The study is published Nov. 7 in Nature, as a fast-track advance online publication.
Diamond, co-senior author James Crowe Jr., MD, of Vanderbilt, and
colleagues screened 29 anti-Zika antibodies from people who had
recovered from Zika infection. They found one, called ZIKV-117, that
efficiently neutralized in the lab five Zika strains – representing the
worldwide diversity of the virus.
To test whether the antibody also protects living animals, the
researchers gave the antibody to pregnant mice either one day before or
one day after they were infected with the virus. In both cases, antibody
treatment markedly reduced the levels of virus in pregnant females and
their fetuses, as well as in the placentas, compared with pregnant mice
that did not get the antibody.
“These naturally occurring antibodies isolated from humans represent
the first medical intervention that prevents Zika infection and damage
to fetuses,” Crowe said.
The placentas from the treated females appeared normal and healthy,
unlike those from the untreated females, which showed destruction of the
placental structure. Damage to the placenta can cause slow fetal growth
and even can cause fetal death, both of which are associated with Zika
infection in humans.
“We did not see any damage to the fetal blood vessels, thinning of
the placenta or any growth restriction in the fetuses of the
antibody-treated mice,” said co-author Indira Mysorekar, PhD, an
associate professor of obstetrics and gynecology, and of pathology and
immunology at Washington University, and co-director of the university’s
Center for Reproductive Sciences. “The anti-Zika antibodies are able to
keep the fetus safe from harm by blocking the virus from crossing the
placenta.”
The antibody also protected adult male mice against a lethal dose of
Zika virus, even when given five days after initial infection. Zika is
rarely lethal in humans, so using a lethal dose allowed the scientists
to see how well the antibody works under the most stringent conditions.
“We stacked the deck against ourselves by using a highly pathogenic
strain of Zika, and even in that case, the antibody protected the mice,”
said Diamond, who is also a professor of pathology and immunology, and
of molecular microbiology.
These findings provide evidence that antibodies alone can protect
adults and fetuses from Zika. Further, they suggest that a vaccine that
elicits protective antibodies in women also may protect their fetuses in
current and future pregnancies. A vaccine is already in human trials,
but it was never tested in pregnant animals, so this new study
represents strong evidence that a vaccine that elicits protective
antibodies in adults is likely to protect fetuses as well.
A Zika vaccine is likely to be the cheapest and simplest method of
preventing Zika-related birth defects. However, there is an outside
possibility that a Zika vaccine could worsen symptoms in people who
encounter the virus later. This is known to occur with dengue virus, a
close relative of Zika. People who have antibodies against one strain of
dengue virus get sicker when infected with a second strain than those
who do not have such antibodies. The phenomenon, known as
antibody-dependent enhancement, has been observed with Zika in a petri
dish but never in living animals or in epidemiologic surveys of people
in Zika-endemic regions.
Nonetheless, the researchers tested whether they could eliminate the
possibility of antibody-dependent enhancement of Zika infection by
modifying the antibody so it could not participate in the process. The
modified antibody, they showed, was just as effective as the original at
protecting the placenta and fetus.
Until a human vaccine is available, it may be possible to protect
fetuses by administering antibodies to pregnant women in an attempt to
prevent transmission from mother to fetus. Under this scenario, a woman
living in a Zika-endemic area would receive the antibodies throughout
her pregnancy, starting when she first learns she is pregnant,
regardless of whether she is diagnosed with Zika. Alternatively,
pregnant women or their partners with acute infection could be treated
with antibodies.
Crowe is continuing the process of developing the antibody as a
potential therapeutic, ramping up production and laying the groundwork
for human studies. Meanwhile, Diamond is focusing on determining whether
antibodies could be used to clear persistent Zika infection. Together,
they are working with others to gain a higher-resolution understanding
of how ZIKV-117 binds the virus and inhibits infection.
“We know that Zika can persist in certain parts of the body, such as
the eyes and the testes, where it can cause long-term damage, at least
in mice,” Diamond said. “We showed that the antibody can prevent
disease, and now we want to know whether it can clear persistent
infection from those parts of the body.”