Cambridge: A large-scale genetic study has provided strong evidence that the development of insulin resistance – a risk factor for type 2 diabetes and heart attacks and one of the key adverse consequences of obesity – results from the failure to safely store excess fat in the body. Overeating and lack of physical activity worldwide has led to rising
levels of obesity and a global epidemic of diseases such as heart
disease, stroke and type 2 diabetes. A key process in the development of
these diseases is the progressive resistance of the body to the actions
of insulin, a hormone that controls the levels of blood sugar. When the
body becomes resistant to insulin, levels of blood sugars and lipids
rise, increasing the risk of diabetes and heart disease. However, it is
not clear in most cases how insulin resistance arises and why some
people become resistant, particularly when overweight, while others do
not.
An international team led by researchers at the University of Cambridge
studied over two million genetic variants in almost 200,000 people to
look for links to insulin resistance. In an article published today in Nature Genetics,
they report 53 regions of the genome associated with insulin resistance
and higher risk of diabetes and heart disease; only 10 of these regions
have previously been linked to insulin resistance.
The researchers then carried out a follow-up study with over 12,000
participants in the Fenland and EPIC-Norfolk studies, each of whom
underwent a body scan that shows fat deposits in different regions of
the body. They found that having a greater number of the 53 genetic
variants for insulin resistance was associated with having lower amounts
of fat under the skin, particularly in the lower half of the body.
The team also found a link between having a higher number of the 53
genetic risk variants and a severe form of insulin resistance
characterized by loss of fat tissue in the arms and legs, known as
familial partial lipodystrophy type 1. Patients with lipodystrophy are
unable to adequately develop fat tissue when eating too much, and often
develop diabetes and heart disease as a result.
In follow-up experiments in mouse cells, the researchers were also able
to show that suppression of several of the identified genes (including
CCDC92, DNAH10 and L3MBTL3) results in an impaired ability to develop
mature fat cells.
“Our study provides compelling evidence that a genetically-determined
inability to store fat under the skin in the lower half of the body is
linked to a higher risk of conditions such as diabetes and heart
disease,” says Dr Luca Lotta from the Medical Research Council (MRC)
Epidemiology Unit at the University of Cambridge. “Our results highlight
the important biological role of peripheral fat tissue as a deposit of
the surplus of energy due to overeating and lack of physical exercise.”
“We’ve long suspected that problems with fat storage might lead to its
accumulation in other organs such as the liver, pancreas and muscles,
where it causes insulin resistance and eventually diabetes, but the
evidence for this has mostly come from rare forms of human
lipodystrophy,” adds Professor Sir Stephen O’Rahilly from the MRC
Metabolic Diseases Unit and Metabolic Research Laboratories at the
University of Cambridge. “Our study suggests that these processes also
take place in the general population.”
Overeating and being physically inactive leads to excess energy, which
is stored as fat tissue. This new study suggests that among individuals
who have similar levels of eating and physical exercise, those who are
less able store the surplus energy as fat in the peripheral body, such
as the legs, are at a higher risk of developing insulin resistance,
diabetes and cardiovascular disease than those who are able to do so.
“People who carry the genetic risk variants that we’ve identified store
less fat in peripheral areas,” says Professor Nick Wareham, also from
the MRC Epidemiology Unit. “But this does not mean that they are free
from risk of disease, because when their energy intake exceeds
expenditure, excess fat is more likely to be stored in unhealthy
deposits. The key to avoiding the adverse effects is the maintenance of
energy balance by limiting energy intake and maximising expenditure
through physical activity.”
These new findings may lead to future improvements in the way we prevent
and treat insulin resistance and its complications. The researchers are
now collaborating with other academic as well as industry partners with
the aim of finding drugs that may reduce the risk of diabetes and heart
attack by targeting the identified pathways.
The research was mainly funded by the Medical Research Council, with additional support from the Wellcome Trust.
Reference
Lotta, LA et al. Integrative
genomic analysis implicates limited peripheral adipose storage capacity
in the pathogenesis of human insulin resistance. Nature Genetics; 14 Nov 2016; DOI: 10.1038/ng.3714