Pages

Sunday, May 31, 2015

How Has the Age-Related Process of Overweight or Obesity Development Changed over Time?

Plos: Overweight and obesity are major threats to global health. The global prevalence of obesity (the proportion of the world's population that is obese) has more than doubled since 1980; 13% of the adult population, or 0.6 billion people, are now classified as obese, while an additional 1.3 billion adults are overweight. Both classifications are determined by body mass index (BMI), which is calculated by dividing a person's weight in kilograms by the square of their height in meters. Obese individuals have a BMI of 30 kg/m2 or more, while overweight individuals have a BMI of 25–30 kg/m2. BMI values above 25 kg/m2 increase the risk of developing non-communicable diseases (NCDs), including cardiovascular diseases, cancers and diabetes.
Each year, NCDs kill 38 million people (including 28 million people in low- and middle-income countries and 9 million people under 60 years of age), thereby accounting for more than 75% of the world's annual deaths.
In the United Kingdom, studies report that roughly one quarter of adults are obese, and a further third or more are overweight. This “obesity epidemic” extends to children; according to the National Child Measurement Programme for England (NCMP), about 9% of 4–5-year-olds and 19% of 10–11-year-olds were obese in 2013. In parallel, the UK has not seen the improvements in child and young adult mortality seen in comparable European states.


Why Was This Study Done?


Cross-sectional surveys in the UK, United States, and elsewhere have documented the obesity epidemic, but longitudinal data—drawn from periodic BMI measurements from individuals over their lifetimes—are needed to clarify the time course, or trajectory, of overweight and obesity. Longitudinal data can answer practical questions important for designing health policy interventions. Is the age at which individuals develop overweight or obesity changing over time? In which individuals are the greatest increases in BMI occurring? The authors leveraged longitudinal data from five birth cohort studies (studies that follow a selected group of individuals born during a short window of time), incepted in 1946, 1958, 1970, 1991, and 2001. These large cohort projects were funded by the UK government for the purpose of providing data for long-term health analyses such as this one; in total, the current study’s included sample comprised 56,632 participants with 273,843 BMI observations from participants aged 2 through 64.


What Did the Researchers Do and Find?


The present study aimed to investigate (1) shifts from the 1940s to the 2000s in the distribution of BMI across age and (2) shifts over the same period in the probability of developing overweight or obesity across age. For each of the five cohorts, subdivided by sex and childhood versus adulthood (thus, a total of 20 datasets), the authors applied statistical models to produce trajectories for each BMI centile (subset that results from dividing the distribution of BMI measurements into 100 groups with equal frequency; here, the 90th centile is the group for which 90% of the relevant population has lower BMI). They then investigated secular trends (long-term, non-periodic variations) at different centiles of the BMI distribution. For example, by comparing the trajectories of the 50th centile for adult males across the five cohorts, the researchers could see how the age at which BMI values reached the obese range varied between eras among this group.
The data revealed that most of the between-cohort, and thus between-era, increases in BMI took place in the highest centiles, indicating that overall gains in BMI mainly comprised very high BMI individuals carrying even more weight. Across the 1946, 1958, and 1970 cohorts, the age at which the 50th centile of adults entered the overweight range decreased from 41 to 33 to 30 years in males and 48 to 44 to 41 years in females. The probabilities of overweight and obesity across adulthood also increased. While children in the 50th BMI centile have remained at normal weight through the decades, the overall childhood probability of developing overweight or obesity has increased 2–3-fold from before to after the 1980s.


What Do These Findings Mean?


These findings describe the changing pattern of age-related progression of overweight and obesity from early childhood in white citizens of the UK. The findings may not be generalizable because other populations have distinct genetic predispositions, environmental exposures, and access to health care. In addition, the accuracy of the findings may be affected by differences between cohorts in how weight and height (and thus BMI) were measured. Nevertheless, these findings—in particular, the increased risk of overweight and obesity at younger ages—suggest that compared to previous generations, current and future generations will accumulate greater overweight or obesity exposure across their lives, likely resulting in increased risk for NCDs. Further research is now needed to determine whether lifestyle factors in the UK have affected the trajectory of BMI and to discover the extent to which these shifting weight trajectories have contributed to morbidity and mortality.